direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Lewin Stein (Dr. rer. nat.)


+49 (0) 30 314 21152

Büro: VWS 120
Post: TU-Berlin, Sekr. MB1
Müller-Breslau-Straße 15
10623 Berlin


  • Fluid-Struktur-Akustik-Interaktion
  • Akustische Modellierung
  • Wellenfeldsynthese
  • Turbulente Grenz- und Scherschichten
  • Numerische Fluiddynamik: Direkte Numerische Simulation, High Performance Computing


Supercomputer Projekte

Journal Artikel

Simulation and Modeling of a Helmholtz Resonator under Grazing Turbulent Flow
Zitatschlüssel steinSimulationModeling18
Autor Stein, Lewin
Jahr 2018
DOI 10.14279/depositonce-8183
Schule Technische Universität Berlin
Zusammenfassung When gas flows along a surface containing a cavity or gap, this fluid-dynamical process is likely linked with acoustical effects. Primarily, in the transport and energy sector, the phenomenon occurs frequently: gas flows around land and air vehicles or streams inside duct systems and engines. A key challenge for these examples is either to prevent cavity noise before it arises or to reduce existing tonal noise by installing a cavity absorber. The present thesis deals with a Helmholtz resonator beneath a turbulent flat plate flow. This representative example includes all the mentioned phenomena of acoustic excitation or damping under realistic conditions. For the first time, a Direct Numerical Simulation of a three-dimensional Helmholtz resonator excited by a turbulent flow is conducted, and an unprecedented database is set up. To effectively simulate on a high performance computing center, a multi-block parallelization method is developed and implemented for complex geometries. A universal acoustic model of the Helmholtz resonator under grazing flow is derived, based on the new numerical database, previous theories by Howe, and experiments by Golliard. This acoustic model stands out through its uniquely defined and physically meaningful parameters, instead of fitted constants. Utilizing the lumped element method, the model consists of exchangeable impedance elements which guarantee a flexible use. The model enables the user to understand and to trace back how a modification of design parameters like the spatial form or the type of incoming flow affects the sound spectrum. The model is validated for low Mach number flows (M=0.01-0.14) and frequencies around the Helmholtz resonator base frequency. Hence, an industrial user is no longer dependent on expensive and time-consuming test series within this typical range of operation. A priori, rather than by trial-and-error approach, the sound absorption spectrum can be easily tuned for specific frequencies. Consequently, the developed model simplifies the design process of cavity absorbers. Furthermore, the model predicts fluid and acoustic resonance conditions and such allows the design engineer to avoid tonal cavity noise in advance. In doing so, the user of the model can circumvent noise pollution and material wear before it occurs.
Link zur Publikation Download Bibtex Eintrag


Mitbetreute Vorlesungen

Betreute Masterarbeiten

  • Gourdazi, A. (2018, Kooperation mit BMW). Temperature effects on aeroacoustics of a subsonic jet flow from an open pipe
  • Jarolin, K. (2017). Randbedingungen mit scharfen Ecken für erhaltende Finite-Differenzen-Verfahren
  • Kruse, P. (2018). Untersuchung der Dynamik des Helmholtz-Resonators mittels modaler Zerlegung

Persönliche Informationen



  • 2010 Yale University (USA) bei Prof. Hong Tang (RISE-DAAD Stipendium)
  • 2009 Tohoku University (Japan) bei Prof. Riichiro Saito (Stipendium durch Studienstiftung des deutschen Volkes)

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.